av无码观看|蜜桃成熟时5D|白嫩少妇|成人午夜免费在线观看|日韩手机在线|豆花视频入口|久久性爱无码|亚洲无码视频在线观看,久久草电影合集,丰满熟妇av,免费啪视频在线观看视频日本

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 使用塑料混合非球面透鏡的優(yōu)點(diǎn)

技術(shù)文章

使用塑料混合非球面透鏡的優(yōu)點(diǎn)

技術(shù)文章

Advantages of Using Plastic Hybrid Aspheric Lenses

TECHSPEC® Plastic Hybrid Aspheric Lenses are low cost optical components that lack both spherical and chromatic aberrations. These aspheric lenses provide optical designers with unique, single element solutions for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources. These aspheric lenses consist of a diffractive surface that has been added to a molded aspheric lens. The aspheric lens eliminates all spherical aberration, while the diffractive surface has a net effect of introducing negative dispersion – when properly tuned to the refractive index and wavelength design of the lens, chromatic aberration is eliminated as well.

 

Spherical and Chromatic Aberrations

There are two major forms of axial optical aberrations inherent in common optical lenses: spherical aberration and chromatic aberration. Spherical aberration is an inherent characteristic of any lens whose surface is a section of a sphere. Light originating from the same object point comes to a focus at slightly different points (P and P’), depending on whether the rays pass through the center of the lens or the periphery (Figure 1).

Figure 1: Spherical Aberration in a Single Positive Lens

 

igure 2.1: Transverse Chromatic Aberration of a Single Positive Lens

 

Figure 2.2: Longitudinal Chromatic Aberration of a Single Positive Lens

 

Chromatic aberration results from material dispersion. Because different colors of light refract by different amounts, an image point formed by light of one color does not coincide with the corresponding image point formed by light of a different color (Figures 2.1 and 2.2).

 

Important Equations

Spherical aberration is typically eliminated by substituting an aspherical surface for the more common spherical surface. The surface profile (sag) is given by Equation 1:

Where

Z = sag of surface parallel to the optical axis

s = radial distance from the optical axis

C = curvature, inverse of radius

k = conic constant

A4, A6, A8 = 4th, 6th, 8th… order aspheric terms

 

However, this does not correct chromatic aberration. Therefore, for a monochromatic light source, the aspheric surface will provide diffraction limited focusing at a single wavelength, but will suffer a large spot size over a broader wavelength.

 

A diffractive surface will correct the spherical aberration, as shown in Equation 2.

Where
Y = radial position from center of lens (for instance, if 0 is the center of the lens, 12.5mm will be the edge of a 25mm diameter lens, etc.)
nd = index of refraction of the material at 587.6nm
Step Height = λ/nd-1
λ = the wavelength of interest

By combining the two features onto a single element, a component that eliminates both chromatic and spherical aberration is created. That surface is described simply as the sum of the Zasph and Zdiff coefficients.

For tips on modeling diffractives in Zemax and Code V, visit the Optics Realm blog.

 

Customer Benefits

Optical designers often need to focus light at very short distances, or collect and collimate as much light as possible from very divergent light sources. Basic optical principles dictate that a high numerical aperture optical lens is required for either of these scenarios. A high numerical aperture optical lens will typically have a focal length equal to or shorter than the clear aperture of the optical system, allowing the designer to maintain as compact of an optical train as possible.

For example, an optical designer has multiple options for achieving a focal length that is equal to his clear aperture (a scenario known as an F/1 lens, or a lens with a numerical aperture of 0.50). The simplest option is to use a standard plano-convex lens, available from a number of distributors. Spot diagram, chromatic focal shift graph, polychromatic diffraction MTF, and transverse ray fan plot for the wavelength range of 486 - 656nm are provided for #45-097 25mm Diameter x 25mm FL PCX lens.

 

PCX Lens

Figure 3.1: Spot Diagram for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.2: Chromatic Focal Shift Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.3: Polychromatic Diffraction MTF Graph for #45-097 25mm Dia. x 25mm FL PCX Lens

Figure 3.4: Transverse Ray Fan Plot for #45-097 25mm Dia. x 25mm FL PCX Lens

 

For improved performance, the optical designer could consider an achromatic lens of the same form factor, for example #65-553 25mm Diameter x 25mm Focal Length Achromatic Lens. Again, the same characteristics are shown over the same wavelength range. A 74% decrease in spot size with a 73% decrease in chromatic focal shift can be seen, yielding an MTF of 13 lp/mm at 40% contrast, a substantial gain versus the aforementioned singlet lens.

Figure 4.1: pot Diagram for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.2: Chromatic Focal Shift Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.3: Polychromatic Diffraction MTF Graph for #65-553 25mm Dia. x 25mm FL Achromatic Lens

Figure 4.4: Transverse Ray Fan Plot for #65-553 25mm Dia. x 25mm FL Achromatic Lens

For maximum performance, the optical designer should choose a plastic hybrid aspheric lens. In this scenario, the exact same form factor and wavelength range are used, this time with #65-992 25mm Diameter x 25mm FL Hybrid Aspheric Lens. As shown, this lens provides diffraction limited focusing performance, yielding the optimum performance for the designer.

 

Plastic Hybrid Lens

Figure 5.1: Spot Diagram for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.2: Chromatic Focal Shift Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.3: Polychromatic Diffraction MTF Graph for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Figure 5.4: Transverse Ray Fan Plot for #65-992 25mm Dia. x 25mm FL Hybrid Aspheric Lens

Comparing the spot diagrams, chromatic focal shift graphs, polychromatic diffraction MTFs, and transverse ray fan plots of a plano-convex (PCX) lens, achromatic lens, and hybrid aspheric lens, it is easy to see the advantages of using plastic hybrid aspheric lenses for achieving diffraction-limited focusing performance at high numerical apertures with broadband light sources.

 

Selection Guide

Edmund Optics® TECHSPEC® Plastic Aspheres and TECHSPEC® Plastic Hybrid Aspheres families are both manufactured utilizing Zeon Chemical’s Zeonex E48R material. Zeonex materials feature high transparency, low fluorescence, low birefrengence, low water absorption, and high heat and chemical resistance, making it a superior material vs. other commonly available plastics. Zeonex is a Cylco Olefin Polymer (COP) material.

Plastic Materials Selection Guide

Property

Glass

Zeonex E48R

PMMA

Polycarbonate

Polystyrene

Arton®

Transmission

Excellent

Excellent

Excellent

Good

Very Good

Excellent

Low Refractive Index

Excellent

Excellent

Excellent

Poor

Poor

Good

Low Birefringence

Excellent

Excellent

Excellent

Poor

Poor

Excellent

Low Water Absorption

Excellent

Excellent

Poor

Good

Excellent

Excellent

Impact Resistance

Poor

Good

Good

Excellent

Good

Excellent

Moldability

Fair

Excellent

Good

Excellent

Excellent

Good

Heat Resistance

Excellent

Good

Poor

Good

Poor

Very Good

Coating Adhesion

Excellent

Good

Fair

Fair

Fair

Good

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
91无码精品专区| aaa黄爽丝袜传媒91麻豆| 免费看国产一级片| 撸亚洲导航第一页| 人妻农妇无码视频| 女人被爽到高潮呻吟免费看| 91精品中综合久久久久| 大香蕉性爱视频在线观看| 粉嫩少妇| 男人天堂av女优在线观看| 国产三级第一页在线观看| 99超碰人人操| 日韩美女性爱视频中文字幕| 美女av色| 操b黄片| 欧美熟妇又乱伦| 国语淫乱视频| 日韩群p性爱毛片| 99大香蕉| 激情文学视频| 亚洲第一少妇| 国产老熟女伦老熟妇视频| 三级伊人电影| 熟女91视频| 成人3s在线| 精品男同一区二区| 北岛玲夜色降临人妻88AV| 亚洲AV在线第一电影| 黑人巨大娇小亚洲女| 大几巴久久久| 97操人人在线资源站| 久久亚洲操| 在线你懂得| 国产一区二区精品久久ai| www.久久色.com| 高潮久久久久| 天天拍天天干天天少妇| 老熟妇淫乱视频| 极品沟厕偷看极品沟厕| 亚洲伊人22| 一起草 视频在线人妻婷婷| 乱伦大香蕉免费的| 日本Jan护士feeL高潮| 亚洲大尺度无码无码专线一区| 国产熟女操比片| 青青草自拍| 亚洲AV无码国产精品日,| 男人色AV| 高清无码艹逼在线观看| 九色 蝌蚪PORNY 在线| 97超碰在线观看人妻| 另类第一页无| 中文 字幕 国产 丝袜 美腿| avtt网五月丁香| 操比在线播放| 精品人妻久久久久久久| 2019免费无码| 国产操逼一级A片| 国产美女被艹| 动漫精品1区 2区 3| 亚洲国产成人无码影视| 日韩 欧美 内射| 国产精品一区二区免费在线| 中文无码免费在线观看| 干老熟女| 极品美女潮喷| 久久一品人妻| 91aaa亚洲欧洲| 丁香园五月天婷婷综合开心| 国产高清AⅤ| 五月丁香六月香蕉综合| 日韩超碰人妻大香蕉| 高清乱伦视频| www.操黄色| 色婷婷综合久久久| 五月天骚逼导航| 亚洲精品久久久久999中文字幕| 亚洲欧洲中文字幕无码| 日本无码嫩草一区二区| AV色东北| 爽人妻一区二区| 少妇小说熟女av| 森泽佳奈无码AV在线观看| 午夜丰满少妇| 操一区二区吃瓜| 自拍偷拍黄色网址| 日韩综合在线一区| A级无码毛片|